Share:

Influence of dynamic non-equilibrium processes on strength and plasticity of materials of transportation systems

Abstract

New experimental results on the effect of additional force impulse loading on the variation of the initial structure of the aircraft material (alloys D16, 2024-T3, VT22) at various stages of deformation are presented and a significant enhancement of its initial plasticity is achieved. Complex investigations into the material properties after a dynamic non-equilibrium process made it possible to describe the main regularities in the nature of deformation and fracture of materials, which allowed proposing general recommendations on using the revealed physical and mechanical regularities in the evaluation of strength of aircraft structures.

Keyword : aircraft material, deformation, fracture, strength of aircraft structures, failure analysis

How to Cite
Chausov, M., Pylypenko, A., Berezin, V., Volyanska, K., Maruschak, P., Hutsaylyuk, V., Markashova, L., Nedoseka, S., & Menou, A. (2017). Influence of dynamic non-equilibrium processes on strength and plasticity of materials of transportation systems. Transport, 33(2), 580-590. https://doi.org/10.3846/16484142.2017.1301549
  Submitted
Jan 24, 2018
Published
May 10, 2017
Abstract Views
7
PDF Downloads
2

References

ASTM B209-14. Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate. Chausov, M. G.; Berezin, V. B.; Pylypenko, A. P.; Hutsaylyuk, V. B. 2015a. Strain field evolution on the surface of aluminum sheet alloys exposed to specific impact with oscillation loading, Journal of Strain Analysis for Engineering Design 50(1): 61–72. https://doi.org/10.1177/0309324714548085 Chausov, M.; Maruschak, P.; Prentkovskis, O.; Pylypenko, A.; Berezin, V.; Volyanska, K. 2015b. Self-organisation of the heat resistant steel structure following dynamic non-equilibrium processes, Solid State Phenomena 220–221: 917–921. https://doi.org/10.4028/www.scientific.net/SSP.220-221.917 Chausov, M.; Maruschak. P.; Pylypenko, A.; Sergejev, F.; Student, O. 2012. Effect of high-force impulse loads on the modification of mechanical properties of heat-resistant steel after service, Estonian Journal of Engineering 18(3): 251–258. https://doi.org/10.3176/eng.2012.3.10 Chausov, M. H.; Volianska, K. M. 2011. Sposib lokalizacii’ dysypatyvnoi’ struktury v materiali pry dynamichnyh nezrivnovazhenyh procesah [Method for localization of dissipative structure in materials at dynamical unstable processes]. Patent Ukrai’ny 97066. G01N 3/08. (in Ukrainian). Dursun, T.; Soutis, C. 2014. Recent developments in advanced aircraft aluminium alloys, Materials & Design 56: 862–871. https://doi.org/10.1016/j.matdes.2013.12.002 Gantois, K.; Morris, A. J. 2004. The multi-disciplinary design of a large-scale civil aircraft wing taking account of manufacturing costs, Structural and Multidisciplinary Optimization 28(1): 31–46. https://doi.org/10.1007/s00158-004-0427-7 GOST 19807-91. Titan i splavy titanovye deformiruemye. Marki. (in Russian). GOST 4784-97. Aljuminij i splavy aljuminievye deformiruemye. Marki. (in Russian). GOST 5632-72. Stali vysokolegirovannye i splavy korrozionnostojkie, zharostojkie i zharoprochnye. Marki. (in Russian). Hutsaylyuk, V.; Chausov, M.; Berezin, V.; Pylypenko, A. 2013. Strength analysis of mechanical systems at dynamic non-equilibrium process, Engineering Failure Analysis 35: 636–644. https://doi.org/10.1016/j.engfailanal.2013.06.005 Hutsaylyuk, V.; Chausov, M.; Berezin, V.; Pylypenko, A.; Volyanska, K. 2014. Influence of dissipative structures formed by impulsed loads on the processes of deformation and fracture, Key Engineering Materials 577–578: 273–276. https://doi.org/10.4028/www.scientific.net/KEM.577-578.273 Ignatovich, S. R.; Menou, A.; Karuskevich, M. V.; Maruschak, P. O. 2013. Fatigue damage and sensor development for aircraft structural health monitoring, Theoretical and Applied Fracture Mechanics 65: 23–27. https://doi.org/10.1016/j.tafmec.2013.05.004 Jones, T.; Rustenburg, J. W.; Skinn, D. A.; Tipps, D. O.; De-Fiore, T. 2005. Statistical Data for the Boeing-747-400 Aircraft in Commercial Operations. Final Report DOT/FAA/AR-04/44. US Department of Transportation, Federal Aviation Administration. 244 p. Available from Internet: http://www.tc.faa.gov/its/worldpac/techrpt/ar04-44.pdf Kaufmann, M. 2008. Cost/Weight Optimization of Aircraft Structures: Licentiate Thesis. KTH School of Engineering Sciences, Stockholm, Sweden. 53 p. Khantuleva, T. A.; Meshcheryakov, Y. I. 2016. Nonequilibrium processes in condensed media. Part 2. Structural instability induced by shock loading, Physical Mesomechanics 19(1): 69–76. https://doi.org/10.1134/S1029959916010070 Lebedev, A. A.; Chausov, N. G. 2004. Novye metody ocenki degradacii mehanicheskih svojstv metalla konstrukcij v processe narabotki: Monografija. Kiev. 133 s. (in Russian). Lebedev, A. A.; Chausov, N. G.; Boginich, I. O.; Nedoseka, S. A. 1996. Systematic evaluation of the damage to a material during plastic deformation, Strength of Materials 28(5): 347–352. https://doi.org/10.1007/BF02330851 Lo, K. H.; Shek, C. H.; Lai, J. K. L. 2009. Recent developments in stainless steels, Materials Science and Engineering: R: Reports 65(4–6): 39–104. https://doi.org/10.1016/j.mser.2009.03.001 Lytvynenko, I. V.; Maruschak, P. O. 2015. Analysis of the state of the modified nanotitanium surface with the use of the mathematical model of a cyclic random process, Optoelectronics, Instrumentation and Data Processing 51(3): 254–263. https://doi.org/10.3103/S8756699015030073 Maruschak, P.; Menou, A.; Chausov, M.; Mocharskyi, V. 2014. Fractographic analysis of surface and failure mechanisms of nanotitanium after laser shock-wave treatment, Key Engineering Materials 592–593: 346–349. https://doi.org/10.4028/www.scientific.net/KEM.592-593.346 Merati, A. 2005. A study of nucleation and fatigue behavior of an aerospace aluminum alloy 2024-T3, International Journal of Fatigue 27(1): 33–44. https://doi.org/10.1016/j.ijfatigue.2004.06.010 Moiseev, V. N. 2000. High-strength titanium alloys for large parts of aircraft engines, Metal Science and Heat Treatment 42(2): 81–83. https://doi.org/10.1007/BF02469872 Nesterenko, B. G.; Nesterenko, G. I. 2013. A way to secure operational safety for an aircraft structure according to a strength criterion, Journal of Machinery Manufacture and Reliability 42(1): 62–75. https://doi.org/10.3103/S1052618813010093 Okipnyi, I. B.; Maruschak, P. O.; Zakiev, V. I.; Mocharskyi, V. S. 2014. Fracture mechanism analysis of the heat-resistant steel 15Kh2MFA(II) after laser shock-wave processing, Journal of Failure Analysis and Prevention 14(5): 668–674. https://doi.org/10.1007/s11668-014-9869-4 Omari, M. A.; Sevostianov, I. 2013. Estimation of changes in the mechanical properties of stainless steel subjected to fatigue loading via electrical resistance monitoring, International Journal of Engineering Science 65: 40–48. https://doi.org/10.1016/j.ijengsci.2013.02.006 Ostash, O. P.; Andreiko, I. M.; Holovatyuk, Y. V. 2006. Degradation of materials and fatigue durability of aircraft constructions after long-term operation, Materials Science 42(4) 427–439. https://dx.doi.org/10.1007/s11003-006-0098-1 Shakleina, V. A.; Zamyatin, V. M. 2010. Inhomogeneity of plastic microdeformation in D16 aluminum alloy, Russian Engineering Research 30(5): 462–466. https://dx.doi.org/10.3103/S1068798X10050072 Sevostianov, I.; Zagrai, A.; Kruse, W. A.; Hardee, H. C. 2010. Connection between strength reduction, electric resistance and electro-mechanical impedance in materials with fatigue damage, International Journal of Fracture 164(1): 159–166. https://dx.doi.org/10.1007/s10704-010-9487-4 Smith, B. L.; Saville, P. A.; Mouak, A.; Myose, R. Y. 2000. Strength of 2024-T3 aluminum panels with multiple site damage, Journal of Aircraft 37(2): 325–331. https://dx.doi.org/10.2514/2.2597 Starke, E. A.; Staley, J. T. 1996. Application of modern aluminum alloys to aircraft, Progress in Aerospace Sciences 32(2–3) 131–172. https://doi.org/10.1016/0376-0421(95)00004-6 Vasyl’jev, O. S.; Gruzd, A. A.; Jolkin, A. O.; Krajevs’kyj, V. M.; Kushnyrenko, S. A.; Nedosjeka, A. Ja.; Nedosjeka, S. A.; Obodovs’kyj, B. M.; Fedchun, O. Ju.; Chausov, M. G.; Jaremenko, M. A. 2012. Desjatyrichnyj dosvid vprovadzhennja bezperervnogo akustyko-emisijnogo monitoryngu shovyshh amiaku Odes’kogo pryportovogo zavodu, Himichna promyslovist’ Ukrai’ny 3: 43–51. (in Ukrainian). Warren, A. S. 2004. Developments and challenges for aluminum – a Boeing perspective, in Aluminium Alloys – Their Physical and Mechanical Properties: Proceedings of the 9th International Conference on Aluminium Alloys (ICAA9), 2–5 August 2004, Brisbane, Australia, 24–31. Yakovleva, T. Y. 2000. Dislocation structure of VT22 titanium alloy in cyclic loading with various loading frequencies, Strength of Materials 32(4): 331–338. https://doi.org/10.1023/A:1026600617137 Zasimchuk, E. E.; Markashova, L. I.; Turchak, T. V.; Chausov, N. G.; Pylypenko, A. P.; Paratsa, V. N. 2009. Peculiarities of structural transformation in plastic materials under abrupt changes in loading conditions, Physical Mesomechanics 12(3–4): 175–179. https://doi.org/10.1016/j.physme.2009.07.010 Zherebtsov, S. V. 2012. Efficiency of the strengthening of titanium and titanium alloys of various classes by the formation of an ultrafine-grained structure via severe plastic deformation, Russian Metallurgy (Metally) (11): 969–974. https://doi.org/10.1134/S0036029512110146 Zholud, A. S.; Derbyshev, A. S.; Dulepov, Y. N. 2012. Use of corrosion-resistant steels and alloys in sulfuric acid media, Chemical and Petroleum Engineering 47(9–10): 627–631. https://doi.org/10.1007/s10556-012-9522-6

Send mail to Author


Send Cancel